Showing posts with label Eclipse. Show all posts
Showing posts with label Eclipse. Show all posts

Saturday, December 27, 2014

Three Common Methods Generated in Three Java IDEs

In this post, I look at the differences in three "common" methods [equals(Object), hashCode(), and toString()] as generated by NetBeans 8.0.2, IntelliJ IDEA 14.0.2, and Eclipse Luna 4.4.1. The objective is not to determine which is best, but to show different approaches one can use for implementing these common methods. Along the way, some interesting insights can be picked up regarding creating of these common methods based on what the IDEs assume and prompt the developer to set.

NetBeans 8.0.2

NetBeans 8.0.2 allows the Project Properties to be configured to support the JDK 8 platform and to expect JDK 8 source formatting as shown in the next two screen snapshots.

Code is generated in NetBeans 8.0.2 by clicking on Source | Insert Code (or keystrokes Alt+Insert).

When generating the methods equals(Object), hashCode(), and toString(), NetBeans 8.0.2 asks for the attributes to be used in each of these generated methods as depicted in the next two screen snapshots.

The NetBeans-generated methods take advantage of the JDK 7-introduced Objects class.

NetBeans-Generated hashCode() Method for Class NetBeans802GeneratedCommonMethods.java
@Override
public int hashCode()
{
   int hash = 5;
   hash = 29 * hash + Objects.hashCode(this.someString);
   hash = 29 * hash + Objects.hashCode(this.timeUnit);
   hash = 29 * hash + this.integer;
   hash = 29 * hash + Objects.hashCode(this.longValue);
   return hash;
}
NetBeans-Generated equals(Object) Method for Class NetBeans802GeneratedCommonMethods.java
@Override
public boolean equals(Object obj)
{
   if (obj == null)
   {
      return false;
   }
   if (getClass() != obj.getClass())
   {
      return false;
   }
   final NetBeans802GeneratedCommonMethods other = (NetBeans802GeneratedCommonMethods) obj;
   if (!Objects.equals(this.someString, other.someString))
   {
      return false;
   }
   if (this.timeUnit != other.timeUnit)
   {
      return false;
   }
   if (this.integer != other.integer)
   {
      return false;
   }
   if (!Objects.equals(this.longValue, other.longValue))
   {
      return false;
   }
   return true;
}
NetBeans-Generated toString() Method for Class NetBeans802GeneratedCommonMethods.java
@Override
public String toString()
{
   return "NetBeans802GeneratedCommonMethods{" + "someString=" + someString + ", timeUnit=" + timeUnit + ", integer=" + integer + ", longValue=" + longValue + '}';
}

Some observations can be made regarding the NetBeans-generated common methods:

  • All generated code is automatic and does not support customization with the exception of the fields used in the methods which the operator selects.
  • All of these common methods that extend counterparts in the Object class automatically have the @Override annotation provided.
  • No Javadoc documentation is included for generated methods.
  • The methods make use of the Objects class to make the generated code more concise with less need for null checks.
  • Only one format is supported for the String generated by toString() and that output format is a single comma-delimited line.
  • I did not show it in the above example, but NetBeans 8.0.2's methods generation does treat arrays differently than references, enums, and primitives in some cases:
    • The generated toString() method treats array attributes of the instance like it treats other instance attributes: it relies on the array's toString(), which leads to often undesirable and typically useless results (the array's system identity hash code). It'd generally be preferable to have the string contents of array attributes provided by Arrays.toString(Object[]) or equivalent overloaded version or Arrays.deepToString(Object[]).
    • The generated hashCode() method uses Arrays.deepHashCode(Object[]) for handling arrays' hash codes.
    • The generated equals(Object) method uses Arrays.deepEquals(Object[], Object[]) for handling arrays' equality checks.
    • It is worth highlighting here that NetBeans uses the "deep" versions of the Arrays methods for comparing arrays for equality and computing arrays' hash codes while IntelliJ IDEA and Eclipse use the regular (not deep) versions of Arrays methods for comparing arrays for equality and computing arrays' hash codes.

 

IntelliJ IDEA 14.0.2

For these examples, I'm using IntelliJ IDEA 14.0.2 Community Edition.

IntelliJ IDEA 14.0.2 provides the ability to configure the Project Structure to expect a "Language Level" of JDK 8.

To generate code in IntelliJ IDEA 14.0.2, one uses the Code | Generate options (or keystrokes Alt+Insert like NetBeans).

IntelliJ IDEA 14.0.2 prompts the operator for which attributes should be included in the generated methods. It also asks which fields are non-null, meaning which fields are assumed to never be null. In the snapshot shown here, they are checked, which would lead to methods not checking those attributes for null before trying to access them. In the code that I generate with IntelliJ IDEA for this post, however, I won't have those checked, meaning that IntelliJ IDEA will check for null before accessing them in the generated methods.

IntelliJ IDEA 14.0.2's toString() generation provides a lengthy list of formats (templates) for the generated toString() method.

IntelliJ IDEA 14.0.2 also allows the operator to select the attributes to be included in the generated toString() method (selected when highlighted background is blue).

IDEA-Generated equals(Object) Method for Class Idea1402GeneratedCommonMethods.java
public boolean equals(Object o)
{
   if (this == o) return true;
   if (o == null || getClass() != o.getClass()) return false;

   Idea1402GeneratedCommonMethods that = (Idea1402GeneratedCommonMethods) o;

   if (integer != that.integer) return false;
   if (longValue != null ? !longValue.equals(that.longValue) : that.longValue != null) return false;
   if (someString != null ? !someString.equals(that.someString) : that.someString != null) return false;
   if (timeUnit != that.timeUnit) return false;

   return true;
}
IDEA-Generated hashCode() Method for Class Idea1402GeneratedCommonMethods.java
@Override
public int hashCode()
{
   int result = someString != null ? someString.hashCode() : 0;
   result = 31 * result + (timeUnit != null ? timeUnit.hashCode() : 0);
   result = 31 * result + integer;
   result = 31 * result + (longValue != null ? longValue.hashCode() : 0);
   return result;
}
IDEA-Generated toString() Method for Class Idea1402GeneratedCommonMethods.java
@Override
public String toString()
{
   return "Idea1402GeneratedCommonMethods{" +
      "someString='" + someString + '\'' +
      ", timeUnit=" + timeUnit +
      ", integer=" + integer +
      ", longValue=" + longValue +
      '}';
}

Some observations can be made regarding the IntelliJ IDEA-generated common methods:

  • Most generated code is automatic with minor available customization including the fields used in the methods which the operator selects, specification of which fields are expected to be non-null (so that null checks are not needed in generated code), and the ability to select one of eight built-in toString() formats.
  • All of these common methods that extend counterparts in the Object class automatically have the @Override annotation provided.
  • No Javadoc documentation is included for generated methods.
  • The generated methods do not make use of the Objects class and so require explicit checks for null for all references that could be null.
  • It's not shown in the above example, but IntelliJ IDEA 14.0.2 does treat arrays differently in the generation of these three common methods:

 

Eclipse Luna 4.4.1

Eclipse Luna 4.4.1 allows the Java Compiler in Project Properties to be set to JDK 8.

In Eclipse Luna, the developer uses the "Source" drop-down to select the specific type of source code generation to be performed.

Eclipse Luna allows the operator to select the attributes to be included in the common methods. It also allows the operator to specify a few characteristics of the generated methods. For example, the operator can choose to have the elements of an array printed individually in the generated toString() method rather than an often meaningless class name and system identity hash code presented.

Eclipse-Generated hashCode() Method for Class Eclipse441GeneratedCommonMethods.java
/* (non-Javadoc)
 * @see java.lang.Object#hashCode()
 */
@Override
public int hashCode()
{
   final int prime = 31;
   int result = 1;
   result = prime * result + this.integer;
   result = prime * result
         + ((this.longValue == null) ? 0 : this.longValue.hashCode());
   result = prime * result
         + ((this.someString == null) ? 0 : this.someString.hashCode());
   result = prime * result
         + ((this.timeUnit == null) ? 0 : this.timeUnit.hashCode());    return result;
}
Eclipse-Generated equals(Object) Method for Class Eclipse441GeneratedCommonMethods.java
/* (non-Javadoc)
 * @see java.lang.Object#equals(java.lang.Object)
 */
@Override
public boolean equals(Object obj)
{
   if (this == obj)
      return true;
   if (obj == null)
      return false;
   if (getClass() != obj.getClass())
      return false;
   Eclipse441GeneratedCommonMethods other = (Eclipse441GeneratedCommonMethods) obj;
   if (this.integer != other.integer)
      return false;
   if (this.longValue == null)
   {
      if (other.longValue != null)
         return false;
   } else if (!this.longValue.equals(other.longValue))
     return false;
   if (this.someString == null)
   {
      if (other.someString != null)
         return false;
   } else if (!this.someString.equals(other.someString))
      return false;
   if (this.timeUnit != other.timeUnit)
      return false;
   return true;
}
Eclipse-Generated toString() Method for Class Eclipse441GeneratedCommonMethods.java
/* (non-Javadoc)
 * @see java.lang.Object#toString()
 */
@Override
public String toString()
{
   return "Eclipse441GeneratedCommonMethods [someString=" + this.someString
         + ", timeUnit=" + this.timeUnit + ", integer=" + this.integer
         + ", longValue=" + this.longValue + "]";
}

Some observations can be made regarding the Eclipse-generated common methods:

  • Eclipse provides the most points in the generation process in which the generated output can be configured. Here are some of the configurable options:
    • Location in class (before or after existing methods of class) can be explicitly specified.
    • All of these common methods that extend counterparts in the Object class automatically have the @Override annotation provided.
    • "Method comments" can be generated, but they are not Javadoc style comments (use /* instead of /** and explicitly state they are not Javadoc comments as part of the generated comment).
    • Option to "list contents of arrays instead of using native toString()" allows developer to have Arrays.toString(Array) be used (same as IntelliJ IDEA's approach and occurs if checked) or have the system identify hash code be used (same as NetBeans's approach and occurs if not checked).
    • Support for four toString() styles plus ability to specify custom style.
    • Ability to limit the number of entries of an array, collection, or map that is printed in toString().
    • Ability to use instance of in generated equals(Object) implementation.
  • All of these common methods that extend counterparts in the Object class automatically have the @Override annotation provided.
  • The generated methods do not make use of the Objects class and so require explicit checks for null for all references that could be null.
  • Eclipse Luna 4.4.1 does treat arrays differently when generating the three common methods highlighted in this post:
    • Generated toString() optionally uses Arrays.toString(Object[]) or overloaded version for accessing contents of array.
    • Generated equals(Object) uses Arrays.equals(Object[], Object[]) or overloaded version for comparing arrays for equality.
    • Generated hashCode() uses Arrays.hashCode(Object[]) or overloaded version for computing hash code of array.
Conclusion

All three IDEs covered in this post (NetBeans, IntelliJ IDEA, and Eclipse) generate sound implementations of the common methods equals(Object), hashCode(), and toString(), but there are differences between the customizability of these generated methods across the three IDEs. The different customizations that are available and the different implementations that are generated can provide lessons for developers new to Java to learn about and consider when implementing these methods. While the most obvious and significant advantage of these IDEs' ability to generate these methods is the time savings associated with this automatic generation, other advantages of IDE generation of these methods include the ability to learn about implementing these methods and the greater likelihood of successful implementations without typos or other errors.

Tuesday, December 31, 2013

Significant Software Development Developments of 2013

At the end of each calendar year, I like to summarize some of the most significant developments in the software development industry that happened during the year that is ending. The choice of these is entirely subjective and obviously colored by my own experience, background, perceptions, and preferences. Not worrying about the opinionated content of such a post, I now present the developments in software development that I consider most significant in 2013.

10. Gradle

Gradle appeared to me to enter the mainstream consciousness of software developers in a big way in 2013. I have been watching Gradle's development and playing with it a bit for some time now, but I have noticed that numerous open source projects now mention it prominently, it's referenced in many recently published Java books that aren't even about Gradle specifically, and Google selected Gradle to be delivered with its Android Studio product announced at Google I/O 2013. It took a while for Maven to breakthrough and compete with Ant and I think 2013 is seeing the beginning of Gradle's breakthrough to challenge Maven and Ant for predominance in Java-based build systems. Three books devoted to Gradle (the short Gradle: Beyond the Basics, the more comprehensive Gradle in Action, and the German Gradle: Modernes Build-Management - Grundlagen und Praxiseinsatz) have listed 2013 publication dates.

Gradle's rapidly rising popularity is nearly matched by its torrid rate of new releases. Gradle 1.4 ("faster builds that use less heap space"), Gradle 1.5 ("optimizations to dependency resolution"), Gradle 1.6 (improved Task ordering, "JaCoCo plugin for test coverage," and support for JUnit test categories), Gradle 1.7 ("fastest Gradle ever"), Gradle 1.8 (performance improvements and more native languages support), Gradle 1.9 (bug fixes and HTML dependency report), and Gradle 1.10 ("command-line usability features") were all released in 2013.

Gradle's success does not surprise me. It's Groovy foundation alone offers numerous advantages: Groovy scripts are easier to write procedural build-style code than is XML, Groovy has numerous syntactic shortcuts, Groovy is easily learned and applied by Java developers, Groovy has full JVM access, and Groovy includes built-in Ant support. On top of its inherent advantages from being built on Groovy, Gradle builds many useful and attractive features of its own on top of that Groovy foundation. Gradle adheres to several Ant and Maven conventions and supports Ivy and Maven repositories, making it straightforward to move from Maven or Ant+Ivy to Gradle.

Ruby on Rails helped bring Ruby into mainstream international prominence and, to a lesser degree, Grails helped do the same thing for Groovy. Gradle has the potential to pick up where Grails left off and push Groovy even further into the spotlight.

9. Trend Toward Single Language Development

For several years now, there has been a definite trend toward polyglot programming (polyglot persistence was even on last year's version of this post). Although this trend is likely to continue because some languages are better for scripting than others, some languages are better suited for web development than others, some languages are better suited for desktop development than others, some languages are better suited for realtime and embedded device development than others, some languages are better suited for scientific computing than others, and so on. However, I have seen indications of the pendulum swinging back at least a bit recently.

One of the arguments in favor of Node.js is the ability for JavaScript developers to use the same language on the "front-end" of a web application as on the "back-end." In the post Top Things I learned about development in 2013, Antonin Januska writes, "Working back to front in the same language is awesome." This is, of course, the reason that Java developers have in some cases been resistant to using JavaScript, Flex, or JavaFX Script (now deprecated) for front-ends of their Java applications (and why tools like Google Web Toolkit have been so popular). Java developers who write desktop applications (yes Virginia, desktop applications do exist) often experience the advantages of using the same language front-to-back as well.

One of Ceylon's most promising possibilities is the ability to write code in Ceylon that works on both Java Virtual Machines and JavaScript virtual machines and so could be used front-to-back in a Ceylon-based application. Indeed, the Ceylon page advertises, "[Ceylon] runs on both Java and JavaScript virtual machines, bridging the gap between client and server." Languages commonly associated with the Java Virtual Machine such as Scala and Kotlin also are offering the ability to compile to JavaScript.

A final example of the trend back to a single language in many environments is the use of Python in scientific computing as covered in the post The homogenization of scientific computing, or why Python is steadily eating other languages’ lunch.

I'm not arguing that this trend means that there will only be one main programming language in the future. However, I do believe it is generally human nature to want to use the same language or approach as much as possible because it's what we're familiar with and using the same language helps us to leverage our experience more broadly in the same application. The trend seems to be for each of the major languages (C/C++, Java, JavaScript, Python, .NET languages, etc.) to continue building up their own "stack" to support end-to-end functionality within that language and its ecosystem of frameworks, libraries, and tools. It's no coincidence that once a new language starts to see significant adoption, it quickly begins to see development of a variety of frameworks, libraries, and toolkits that extend the reach of that language.

I also don't want to imply that this is the end of polyglot programming. I don't see any programming language that is the best fit in all cases and there is no doubt that the most valuable developers will be those familiar with more than one programming language.

8. Internet of Things

I first heard about the concept of the Internet of Things at JavaOne 2012 and it got even more attention at JavaOne 2013. Oracle is not the only company touting the Internet of Things. IBM is into the Internet of Things as are many others.

Some believe that 2014 will be the year of the Internet of Things. Tori Wieldt has called "Java and the Internet of Things" one of the "Top Java Stories of 2013." In 2013, two series in Hinkmond Wong's Weblog have focused on the Internet of Things with featured posts on a Thanksgiving Turkey Tweeter and on a Christmas Santa Detector.

Other useful articles with differing opinions on the Internet of Things include The Internet of Things: a tangled web, Here's the Scariest Part of the Internet of Things, The Internet Of Things Will Be Huge—Just Not As Huge As The Hype, Five Challenges For The Internet of Things Ecosystem, The Internet of things will not arrive in 2014, CES 2013: The Break-Out Year For The Internet Of Things, and Here's Why 'The Internet Of Things' Will Be Huge, And Drive Tremendous Value For People And Businesses.

On a lighter (or more dire, depending on your perspective) note related to The Internet of Things, Aaron Pressman writes, "The whole crazy 'Internet of Things' movement to put everything under network control seems tailor made for Hal" (2001: A Space Odyssey).

7. Mobile Development

If someone not familiar with our industry was to start reading our software development social media sites and forums, that person would likely come to the conclusion that the vast majority of software development today is development of mobile applications. I have long argued that blog posts and articles often skew toward more leading-edge topics than established topics for a variety of reasons (perception/reality that established topics are already well-covered, resume building, fun to play with and write about new things, etc.). That being stated, there is no question that mobile development is popular in reality and not just in perception. There is no question that a big part of HTML5's popularity and rapid adoption is the opportunity to write applications in one set of languages (HTML/JavaScript/CSS) that will run on multiple mobile devices. Numerous projects and tools are being released to allow for writing applications in one language and compiling them to native formats for various mobile devices.

6. Responsive Design

At the end of 2012, Pete Cashmore predicted that 2013 would be the "Year of Responsive Web Design" because of its "obvious benefits": "You build a website once, and it works seamlessly across thousands of different screens." I like Jordan Larkin's explanation of responsive web design:

The term "responsive web design" (or responsive mobile design) refers to websites that change and adapt their appearance for optimum viewing on all screen sizes, tablets, smartphones, ipods, kindles along with desktop and laptop computer screens. Occasionally, in the digital arts industry, it is called "fluid design", "adaptive website design" or "RWD". Unresponsive websites do not change to fit different screen sizes, which means they can be difficult to navigate and look at on smaller devices.

As a person who is using a smartphone for an increasing percentage of my daily online activities, but still uses the laptop frequently and the desktop occasionally, I am appreciating firsthand the web site authors whose web sites and pages work well on all of these devices. It's often satisfactory to have two different web sites (one for mobile devices and one for everything else) from a consumer point of view, but this obviously means essentially duplicate code for the site developers. Even from a consumer point of view, there are times when I find the mobile version of a site lacking in features and in those cases it'd be preferable to have the regular site on all devices as long as that regular site appeared nicely on all devices.

The highly informative web site A List Apart has a nice set of articles related to responsive web design.

5. Node.js

JavaScript, despite its flaws, has dominated the web browser for years. Although JavaScript on the server has been available for some time (such as with Rhino and more recently Nashorn in Java), Node.js seems to be doing for JavaScript on the server what Ruby on Rails did for Ruby: the framework is popularizing the language (or in this case, popularizing the language specifically on the server).

2013 has been a big year for Node.js. There are numerous blogs and articles written on it on seemingly a daily basis. Some of these articles include What You Need To Know About Node.js and Node.js keeps stealing Rails' thunder.

Several books on Node.js have been published in 2013. These include Node.js in Action, Learning Node.js: A Hands-On Guide to Building Web Applications in JavaScript, Node.js the Right Way: Practical, Server-Side JavaScript That Scales, Pro Node.js for Developers, Node.js Recipes: A Problem-Solution Approach, Mastering Node.js, Using Node.js for UI Testing, JavaScript on the Server Using Node.js and Express, and the final version of The Node Beginner Book.

4. Big Data

Big Data holds the same #4 spot on my list as it did last year. Apache Hadoop and the R Project are just two examples of popular products/languages riding the Big Data wave. Python too, is increasingly being chosen as the programming language of choice for working with big data sets.

Readers of java.net recently answered a survey regarding Big Data in which the closest thing to a consensus seemed to be that "Big Data Is Probably Significant, but not too Surprising."

3. HTML5

HTML5 saw initial hype, disappointed for a while, and seems to be back on its rapid rise in popularity. I don't call out JavaScript individually in this post, but group it with HTML and CSS as part of HTML5 (and its also grouped with Node.js in this post). Given that HTML5, for purposes of this blog post, represents all of these things, it easily makes my top three significant software development developments in 2013. As mentioned previously with regard to mobile development, HTML5 is a popular approach for generating applications once that can theoretically run on any mobile device.

HTML5 features are seeing increasing standardization in terms of implementations in major browser. JavaScript/HTML libraries such as Angular.js and Ember.js are building on the momentum that jQuery has brought to HTML5 development in recent years.

HTML5's success is even evident in languages not considered part of HTML5 themselves. For example, one of the most heavily advertised new features of Java EE 7 is its HTML5 support. Recent versions of NetBeans IDE (considered primarily a Java IDE despite its multiple language support) have also seemed to emphasize HTML5 among their most important new features in 2013.

2. Security

As more information is online and we depend increasingly on availability of our data online, security continues to be an important issue for software developers. The trend of highly visibility security incidents continued in 2013. These incidents affected Ruby on Rails, Java, and other languages. The increasing frequency of security patches led Oracle to change how it labels the versions of Java SE.

An early 2013 article, Safeguard your code: 17 security tips for developers, outlines tips developers can take to improve the security of their applications. An earlier article in 2013 spelled out the increasing security concerns companies face. The book Java Coding Guidelines: 75 Recommendations for Reliable and Secure Programs has also been published in 2013. The 10 Biggest Security Stories Of 2013 outlines some of the biggest security-related stories of 2013.

1. Technical Dysfunction

Sadly, from a software development perspective, 2013 may be most remembered for the high profile technical glitches that occurred. Words like "debacle," "disaster," and "meltdown" have been associated with these issues and, rightly or wrongly, have reflected poorly on our industry. The most high profile dysfunction has been the embarrassing United States healthcare site healthcare.org. However, the issues that affect reputations and customer confidence have not been limited to government. Wal-Mart and Target, two major retailers in the United States, have had notable web site issues in the latter part of 2013 as well. Cloud-impacting technical dysfunction has occurred in 2013 in several notable cases including Amazon Web Services (AWS) and Google (including the search engine).

There seems to be plenty of blame to go around, but it seems difficult to get a good read on exactly what has caused these high profile technical failures. With healthcare.org, for example, I've seen people blame all types of different culprits including not allotting enough time to the effort, not being agile enough, being too agile, failing for despite agile approaches, failing to estimate user load correctly, getting government involved, etc. Although the real reasons are probably multiple and varied in nature and probably interest software developers more than others, the perception of our industry has gotten dinged up in 2013.

Honorable Mention

Although the developments in software development listed below did not make my top ten, they are significant enough to me to make this "Honorable Mention" category (in no particular or implied order).

JSON

One of the benefits of XML many years now has been the ubiquity of XML support across different languages, tools, frameworks, and libraries. For example, I recently wrote about how easy it is to use Groovy to search Subversion logs because Subversion makes its log output available in XML format and Groovy knows XML well.

JSON has been very popular with developers for some time now, but there have been many cases where standard libraries and tools that supported XML did not support JSON, meaning that developers had to write custom writing/reading code for JSON when using those libraries and tools. I'm beginning to see a lot more JSON support with tools and libraries now. Programming languages are also providing nice JSON parsing/writing capabilities. For example, Groovy has had JSON support for some time and Java EE 7 (JAX-RS 2.0) includes JSON support via the Java API for JSON.

JSON has been prominent enough in 2013 to warrant being included in titles of two Packt Publishing books published in 2013: JavaScript and JSON Essentials and Developing RESTful Services with JAX-RS 2.0, WebSockets, and JSON.

Java EE 7 Released

Java EE 7 was officially released in 2013. In a testament to Java EE's current widespread use and expected potential use of Java EE 7, book publishers have already published several books on Java EE 7 including Java EE 7 First Look, Java EE 7 Essentials, Beginning Java EE 7, Java EE 7 Recipes: A Problem-Solution Approach, Introducing Java EE 7: A Look at What's New, and Java EE 7 Developer Handbook.

Although I've never embraced JavaServer Faces (JSF), the feature of Java EE 7 that has been most interesting to me is the support for Faces Flows. I first read about this feature when reviewing Java EE 7 First Look and Neil Griffin's post Three Cheers for JSF 2.2 Faces Flows have reinforced my interest in this feature. In the post A Realistic JSF 2.2 Faces Flows Example, Reza Rahman supports my opinion that this is a key feature in Java EE 7 to watch with the quote, "Faces Flows are one of the best hidden gems in Java EE 7." Michael and Faces Flows might persuade me to give JavaServer Faces another look.

A recent blog post shows integration of AngularJS with Java EE 7.

Single Page Applications

The advantage of web applications over desktop applications has always been significant easier deployment of web applications than of desktop applications. The cost, however, has been a less fluid experience and sometimes less performing application than could be provided on the desktop. The concept of single-page applications is to make web (and by extension mobile applications that use traditional web technologies) feel and behave more like a "single-page" desktop application. Newer JavaScript libraries such as Meteor are being designed for the "thicker client" style of single-page applications.

The Wikipedia page on Single Page Application lists some technical approaches to implementing this concept. The Manning book Single Page Web Applications was also released in 2013. It's subtitle is "JavaScript end-to-end" (another piece of evidence of the general movement toward a single language).

See the description of Meteor below for another nice explanation of how web development is moving toward what is essentially this concept of single-page applications.

AngularJS

It seems like one cannot read any software development social media sites without running across mention of AngularJS. Although its Google roots are undoubtedly part of its success, AngularJS enjoys success from cleanly addressing significant needs in HTML/JavaScript development (shifting appropriate dynamic functionality from pure JavaScript to HTML with clever binding). In his post 10 Reasons Why You Should Use AngularJS, Dmitri Lau states that "Angular is the only framework that doesn’t make MVC seem like putting lipstick on a pig." Jesus Rodriguez, in his post Why Does Angular.js Rock?, writes that AngularJS "excels in the creation of single-page-applications or even for adding some 'magic' to our classic web applications." K. Scott Allen writes in his post Why Use AngularJS?, "I like Angular because I have fun writing code on top of the framework, and the framework doesn't get in the way."

Ember.js

Ember.js is another JavaScript library seeing significant online coverage in 2013. Ember 1.0 was released on 31 August 2013 and Ember 1.2.0 was released on 4 December 2013.

Like AngularJS and Knockout, Ember.js's approach is to embrace HTML and CSS rather than trying to abstract them away.

Famo.us

The famo.us web page currently requires one to "sign up for the beta" before being able to "experience famo.us." It's subtitle is "a JavaScript engine and framework that solve HTML5 performance." Another famo.us page states, "famo.us is a front end framework that solves performance for HTML5 apps" and "works for phones, tablets, computers and television."

Famo.us is discussed in two late 2013 InfoWorld posts: Did these guys just reinvent the Web? and Fast and flashy: Famo.us JavaScript framework revealed.

At this point, famo.us is still in beta, but it could be big in 2014 if it is able to deliver on what is advertised in 2013.

Meteor

Meteor is described on its main page as "an open source platform" for writing "an entire app in pure JavaScript" and using the "same APIs ... on the client and the server." In the Paul Krill interview Meteor aims to make JavaScript programming fun again, Matt DeBergalis stated that Meteor was created to address the changing web development paradigm often referred to as single-page application:

There is a shift in the Web application platform, and specifically, people are starting to write a new kind of application, what we call a thick client, where most of the code is actually running inside the Web browser itself rather than in a data center. This is an architectural change from running the software in the data center and sending HTML on the wire to a model where we have data on the wire and the actual rendering, the displaying of the user interface, is happening on the client. ... That's why it feels more interactive. It's not page-based like the old Web. It's much more engaging."
MEAN Stack

Having a witty acronym helped advertise and communicate the LAMP stack (Linux, Apache HTTP Server, MySQL/MariaDB, PHP/Perl/Python) and arguably contributed to the adoption of this combination of technologies. With this in mind, I found Valeri Karpov's post The MEAN Stack: MongoDB, ExpressJS, AngularJS and Node.js interesting. The post's author is another who points out the productivity advantages that can be gained from using a single language throughout an application. There is already a book underway: Getting MEAN with Mongo, Express, Angular, and Node. It will be interesting to watch this newly minted terminology and see if the stack and its name come close to the success that the LAMP stack and its name have enjoyed.

Commercial Support Dropped for GlassFish 4

Although it took longer to happen than most people probably anticipated, Oracle's dropping of commercial support for GlassFish 4 was formally announced in 2013 and is what most of us expected when we heard of Oracle purchasing Sun. The future of GlassFish is certainly cloudier now and expectations for GlassFish's future range from it being essentially dead to it thriving as the reference implementation.

Java IDEs

The major Java IDEs continued to add features to their already impressive feature sets in 2013. NetBeans had two major releases in 2013 with 7.3 released in February and 7.4 released in October. These two NetBeans releases added features such as Java EE 7 support, Project Easel for HTML5 development, Groovy 2.0 integration, JSON support, support for new JavaScript libraries (including Angular.js), native Java application packaging, Cordova integration, and improved support for non-JVM languages C/C++ and PHP.

IntelliJ IDEA 13 was released earlier this month. The release announcement highlights support for Java EE 7, improved Spring Framework integration, improved Android support thanks to IntelliJ IDEA Community Edition being used as the basis for Android Studio, improved database handling, and "refined Gradle support." Eclipse is often the IDE chosen for building a more specialized IDE such as Spring IDE (Spring Tool Suite), Scala IDE, or the new Ceylon IDE, so it's a particularly big deal that Google chose IntelliJ IDEA as the basis of its Android Studio.

Speaking of Eclipse, the seemingly most used Java-based IDE (especially when you consider the IDEs derived from it or based on it) also saw new releases in 2013. Eclipse 4.3 (Kepler) was released in 2013. There were also numerous popular plugins for Eclipse released in 2013.

Visual Studio 2013

Sun Microsystems was not the only company that saw desirable advantages and benefits from a single language that could be used at all layers of an application. Microsoft has implemented various efforts (Silverlight) for years to do the same thing. In 2013, Visual Studio 2013 was released with significant enhancements. These enhancements included improved support for languages not specific to Microsoft's .NET framework. Many of these better supported languages are on my list in this post: JavaScript, HTML, CSS, and Python.

Groovy

Groovy's 2.0 release (including static compilation support) made 2012 a big year for Groovy. Although 2013 did not see as significant of enhancements in the Groovy language, the year did start out with the announcement of Groovy 2.1. Perhaps the biggest part of that 2.1 release was Groovy's full incorporation of Java SE 7's invokedynamic, a major Java SE enhancement intended for non-Java languages like Groovy.

Groovy 2.2's release was announced toward the end of 2013. This release improved Groovy's invokedynamic support by adding OSGi manifests to the Groovy's invokedynamic-based JARs.

In The Groovy Conundrum, Andrew Binstock writes that "with the performance issues behind it, Groovy is a language primed for widespread use," but warns that Groovy is a language that is "easy to learn, but hard to master."

As is mentioned more than once in this post, Groovy has had a lot of additional exposure in 2013 thanks to Gradle's rapidly rising popularity. I believe that Gradle will continue to introduce Groovy to developers not familiar with Groovy or will motivate developers who have not looked at Groovy for some time to look at it again.

Scala

It seems to me that Scala continues to gain popularity among Java developers. I continue to see Scala enthusiasts gushing about Scala on various Java and JVM blog comments and forums. One piece of evidence of Scala's continuing and increasing popularity is the number of new books published in 2013 with Scala in their title. These include Scala in Action, Scala Cookbook: Recipes for Object-Oriented and Functional Programming, Functional Programming Patterns in Scala and Clojure: Write Lean Programs for the JVM, Scala Design Patterns: Patterns for Practical Reuse and Design, Play for Scala, Scala Object-Oriented Programming, and Getting Started with SBT for Scala.

For a much better background on what made 2013 a big year for Scala, see Jan Machacek's This Year in Scala (2013).

Ceylon

November 2013 saw "the first production release of the Ceylon language specification, compiler, and IDE." This announcement, available online at Ceylon 1.0.0 is now available, also states, "Ceylon 1.0 is a modern, modular, statically typed programming language for the Java and JavaScript virtual machines." Ceylon offers an Elipse-based IDE and has a formal specification. One of the factors favoring a successful future for Ceylon is its Red Hat sponsorship.

Kotlin

Kotlin is another language that compiles to the Java Virtual Machine or to a JavaScript virtual machine. It also has a strong sponsor in the world of Java in JetBrains, the company behind IntelliJ IDEA. 2013 saw several new releases of Kotlin: Kotlin M5.1, Kotlin M6, Kotlin M6.1, and Kotlin M6.2. I found the blog post Programming Android with Kotlin interesting because it demonstrates use of Kotlin and Gradle to build an Android application.

Go

The Go programming language has had strong backing from Google and continues to receive significant online coverage. Go 1.1 and Go 1.2 (with apparently improved performance) were both released in 2013. Of special interest to me is Go's advertised source code backwards compatibility for all versions 1.x.

Camel

2013 was a big year for Apache Camel, the tool that "empowers you to define routing and mediation rules in a variety of domain-specific languages." Camel-related developments in 2013 included the release of 2.11.0, release of 2.12.0, and release of 2.12.2. These frequent releases and the addition of a new committer and PMC member are among the signs of a healthy open source project.

The release of the Camel Essential Components (DZone Refcardz #170) kicked off 2013 for Camel. Camel got increased attention on software development social media sites in 2013. Zemian Deng's Getting started with Apache Camel using Java was syndicated on Java Code Geeks (as was his Apache Camel using Groovy Introduction) and Niraj Singh's Introduction to Apache Camel was also syndicated on Java Code Geeks. AndrejV's entire blog Just Did Some Code has so far (5 posts in 2013) been devoted to coverage of Camel!

Spring Boot

It's still early to tell because Spring Boot is currently only at version 0.5, but Spring Boot has potential to be be widely adopted and used in the future. It looks like Spring Boot is inspired by and takes advantage of some of the best ideas in Ruby on Rails and Groovy and applies them to easy generation of Spring Framework-based applications.

Python

As stated earlier, Big Data is big and Python is getting a share of that Big Data action. The Continuum Analytics post Python for Big Data states, "Python is a powerful, flexible, open-source language that is easy to learn, easy to use, and has powerful libraries for data manipulation and analysis. ... Python has a unique combination of being both a capable general-purpose programming language as well as being easy to use for analytical and quantitative computing." Tal Yarkoni echoes this statement and observes that his "scientific computing toolbox been steadily homogenizing" on Python.

Python 3.3.1, Python 3.3.2, and Python 3.3.3 were all released in 2013. Cython has joined Pyrex as an alternative for easily writing C extensions with Python syntax and there is even a book on Learning Cython Programming.

The article Python 3.4.0 goes to beta with slew of new modules talks about some of the new features coming with Python 3.4.0 (beta) such as a standard enumeration construct. The article also points out that one of the biggest frustrations with Python remains: the two versions of the language (2.x and 3.x) and no easy route from 2.x to 3.x. From a Java development perspective, I find this interesting because there was a time when arguments like Bruce Eckel's ("People who don't want to deal with these changes don't upgrade, and those people tend not to upgrade anyway") seemed logical and sensible. However, it's not quite as easy as it sounds, particularly when one starts to realize the impact of this on the entire set of products, libraries, and frameworks written for a language that can be heavily impacted and perhaps not usable for some time if ever with the new language.

PHP and HHVM

2013 saw the formal release of the PHP 5.5.x versions: PHP 5.5.0, PHP 5.5.1, PHP 5.5.2, PHP 5.5.3, PHP 5.5.4, PHP 5.5.5, PHP 5.5.6, and PHP 5.5.7.

At the beginning of 2013, Gabriel Manricks outlined reasons Why 2013 is the Year of PHP. Specifically Manricks described tools such as Laravel (including Eloquent ORM), Composer (dependency manager, including Packagist), and PHPUnit (test-driven development in PHP).

The Facebook project HHVM (HipHop Virtual Machine for PHP) was initially released in 2010, but seemed to see a lot more attention in 2013. The original HPHPc compiler compiled PHP into C++ and was another manifestation of the drive to use a single language for authoring an application even if its compiled form was different. The availability of the open source HipHop Virtual Machine (HHVM) for PHP should help address performance issues with PHP; that is seemingly Facebook's primary reason for developing it.

Android Studio

Android Studio was announced at Google I/O 2013 as "a new IDE that’s built with the needs of Android developers in mind" that is "based on the powerful, extensible IntelliJ IDEA Community Edition."

Cloud Computing

Interest in cloud computing remained strong and continued to grow rapidly in 2013. Many of the other items discussed in this post (Big Data, security, technical dysfunctions, etc.) have strong relationships to cloud computing. For more on the biggest cloud stories on 2013, see The 10 Biggest Cloud Stories Of 2013.

Internet Explorer 11

I have not used Internet Explorer except when forced to for a number of years. For a long time, I used Firefox almost exclusively and in recent years I've used Google Chrome almost exclusively on PCs and Firefox on Linux. When I have been forced by a particular web site to use Internet Explorer, I have done reluctantly and am reminded of the much slower performance of the browser than I'm used to in terms of startup and even navigation. I have noticed over this Christmas break, however, when I had to install Internet Explorer 11 manually because the automatic process kept failing, that it's a lot faster than even Internet Explorer 10 was. I still won't make it my primary browser, but it's nice that it performs much better when I do need to use it (such as to play Atari Arcade games without advertisements).

Internet Explorer 11 offers advantages for developers as well as users of the browser. Advertised benefits for developers (and by extension for users of these developers' applications) are improved standards compatibility, new F12 developer tools,

It's not all positive for Internet Explorer 11. Some people seem to want to downgrade to Explorer 10 and reportedly Internet Explorer 11 is presenting some problems for users of Microsoft's own CRM application (after earlier reportedly breaking Google and Outlook access).

It surprises me a bit that the main Microsoft IE URL (http://windows.microsoft.com/en-us/internet-explorer/download-ie) referenced by the Internet Explorer 11 Guide for Developers still advertises downloading of Internet Explorer 9, a version of that browser that Google has already stated they will no longer support.

Windows 8 Not As Successful

Windows 8 seems to be experiencing similar disappointment after Windows 7 that Windows Vista experienced after Windows XP. In fact, The 10 Biggest Software Stories Of 2013 states, "So it looks like Windows 7 will become the new Windows XP -- better get those downgrade rights ready."

Raspberry Pi

The Raspberry Pi continues to catch a lot of interest (2 million had been sold as of October of this year). There were seemingly endless posts on how to do a wide variety of things with the Raspberry Pi. Some of these that stood out most to me are Premium Mathematica software free on budget Raspberry Pi, GertDuino: An Arduino for Your Raspberry Pi, How an open-source computer kit for kids based on Raspberry Pi is taking over Kickstarter, Running OpenJFX on Raspberry Pi, and Simon Ritter: Do You Like Coffee with Your dessert? Java and the Raspberry Pi.

DevOps

The 10 Biggest Software Stories Of 2013 points out that "Cisco, Google and VMware last year invested in Puppet Labs" and that "another DevOps player, Opscode, raised $32 million and changed its name to Chef, the name of its flagship product."

Twitter Bootstrap

Bootstrap (alternatively known as Twitter Bootstrap and Twitter Blueprint) has become so popular and prevalent that there is now a popular (one of DZone's top posts in 2013)

post stating Please stop using Twitter Bootstrap. In August 2013, two years after the public release of Bootstrap, Bootstrap 3 was released (with 3.0.3 released in December). Everybody Should Code

The conversation of whether everybody should or code write code and develop software continued in 2013. Jessica Gross's writes about 10 places where anyone can learn to code and Megan O'Neil's article A Start-Up Aims to Teach Anyone to Write Computer Code features one of these places (Codecademy). Kevin Lindquist writes that software development isn’t just for coders anymore. Katie Elizabeth lists the reasons why everyone should learn to code while Chase Felker wonders if maybe not everybody should learn to code.

In 2013, President Obama (United States) asked America to learn computer science and it may be one of the few things Republicans and Democrats agree on, but Philip Bump argues, No, Mr. President, Not Everyone Needs to Learn How to Code.

SQL Strikes Back

NoSQL implementations have been all the rage for years, but 2013 seemed to present some resurgence in interest in SQL. Some NoSQL implementations added SQL or SQL-like syntax. SQLstream announces Return of the King: The Structured Query Language Is Back! and Jason Levitt and Sean Gallagher write "The hot new technology in Big Data is decades old: SQL."

The truth is that SQL never really went away and is heavily entrenched in software systems, but what is really interesting 2013 is the new thought and effort put into SQL development. word of Google's F1 SQL database ("a hybrid database that combines high availability, the scalability of NoSQL systems like Bigtable, and the consistency and usability of traditional SQL databases") is an example of this. Seth Proctor asks Do All Roads Lead Back to SQL? and writes of "NewSQL." In Software Development Trends for 2014, Werner Schuster states that "Many NoSQL DBs come with SQL or SQL-like languages" and asks, "Are SQL skills back in fashion?"

Conclusion

2013 may be remembered in popular culture as the year of selfies, but the developments in the software development world were far more substantive. In particular, it is interesting to see how developers in general are beginning to (or are remembering to) appreciate the ability to write an application front-to-back in a single language and to write responsive designs so that an application need be written only once for multiple platforms. The advantages of these approaches are not new to JVM (Java/Java EE) or CLR (.NET) developers, but seem to now be better appreciated by the more general developer community.

Previous Years' Significant Software Development Developments

The following are my posts similar to this one on items that I thought were of special import to software development in those respective years. I could definitely go back and add to some of these with things I've learned about since then for each of these years.

Saturday, October 26, 2013

Too Many Parameters in Java Methods, Part 8: Tooling

The first seven posts of my series of dealing with too many parameters expected in Java methods focused on alternative approaches to reduce the number of parameters a method or constructor expects. In this eighth post in the series, I look at tools that help identify cases where too many parameters may exist and tools that help deal with that when it occurs.

There is really no hard rule for the number of parameters to a method or constructor that is too many. In many ways, it's a matter of taste and depends somewhat on what those parameters are, if they use custom types rather than primitives and repeated types, and whether there are optional parameters that might require null to be passed.

Robert Martin, in Clean Code, writes (page 40):

The ideal number of arguments for a function is zero (niladic). Next comes one (monadic), followed closely by two (dyadic). Three arguments (triadic) should be avoided where possible. More than three (polyadic) requires very special justification - and then shouldn't be used anyway.

Steve McConnell, in Code Complete, writes that developers should "limit the number of a routine's parameters to about seven" because "seven is a magic number for people's comprehension." I don't think there's any set maximum number of parameters, but seven does seem like a "rule of thumb" to rarely exceed and I do generally prefer a smaller number such as Martin's recommendation of fewer than three arguments.

"The Eye Test"

There is a common expression in sports talk and sports writing that some player or team "doesn't pass the eye test." My understanding of that expression is that it means that despite whatever positive statistics might be associated with that player or team, watching the player or team play leads one to believe that they are not as good as the statistics might indicate. In other words, in a way that is difficult to describe, the viewer feels the team or player is not as skilled as their statistics imply.

In many ways, software development has its own "eye tests" that tell us when certain things are better or worse than the "rules" imply. Despite this, we still have "rules" or general guidelines about what makes for a generally good software practice just as sports have statistics to attempt to contrast teams and players objectively. For example, in software, we might say that "fewer parameters is generally better than more parameters." Tooling's biggest limitation is that it cannot perform an "eye test" for us, but it can help us to identify potential areas for improvement. In other words, tooling can help report the "statistics" of the game or match, but we must pass our own judgment ("eye test") on what the tooling is reporting.

Static Analysis Tools

Static analysis tools can be used to automatically identify methods or constructors which might expect too many parameters. Once the methods and constructors with potentially too many parameters have been identified, the developer can apply the "eye test" to them to determine if corrective action should be taken.

PMD

PMD (with the humorous slogan "Don't Shoot the Messenger") is a "source code analyzer" that "finds common programming flaws" in a number of programming languages (including Java). One of PMD's rules is "ExcessiveParameterList" (LongParameterListRule in PMD 4.3 instead of ExcessiveParameterList). The PMD-provided action when this rule is triggered is to "try to group the parameters together" with a "a new object [that] should be created to wrap the numerous parameters" (see my post on parameters objects). Newer PMD documentation puts it this way, "Methods with numerous parameters are a challenge to maintain, especially if most of them share the same datatype. These situations usually denote the need for new objects to wrap the numerous parameters."

Any tool must have a specified number of parameters that is considered "too many." In PMD's case, that default number is 10. Note that this default minimum threshold for triggering the PMD rule is higher than Steve McConnell's recommendation of 7 maximum parameters and significantly higher than Robert Martin's recommendation of fewer than three parameters.

NetBeans PMD support is available via the PMD Plugin. NetBeans PMD support is also available via the Software Quality Environment Plugins. I covered this in the previous posts NetBeans 7 and Software Quality Environment and Configuring SQE Plugins in NetBeans 7. QAPlug-PMD is a similar plug-in for IntelliJ IDEA and PMD Eclipse is available for Eclipse.

Checkstyle

Like PMD, Checkstyle detects and warns about too many method and constructor parameters. Checkstyle is defined on its main web page as "a development tool to help programmers write Java code that adheres to a coding standard." Specifically, Checkstyle provides the ParameterNumber "check" with the description, "Checks the number of parameters of a method or constructor." In Checkstyle's case, the default "maximum allowable number of parameters" for a constructor or method is 7 (same number as Steve McConnell's recommendation).

Checkstyle can be used in conjunction with NetBeans using the Checkstyle Beans plugin. Like NetBeans PMD support, Checkstyle support in NetBeans is also available via the previously mentioned Software Quality Environment. The eclipse-cs plugin supports Checkstyle integration with Eclipse and Checkstyle-IDEA is a similar plugin for IntelliJ IDEA.

CodePro Analytix

CodePro Analytix is part of the Google Java Developer Tools and is described as "the premier Java software testing tool for Eclipse developers who are concerned about improving software quality and reducing developments costs and schedules." It includes Code Audit capabilities with one category of rules being "Program Complexity." One of these rules is the "Large Number of Parameters" rule. That rule's Summary is that "Methods should not have too many parameters" and its description is: "This audit rule finds methods that have more than the specified number of parameters. Methods that exceed this number are likely to be too complex. Consider moving some of the values and behavior associated with them into a separate class."

It is also worth noting that CodePro Analytix also supports a "Average Number of Parameters" metric for metrics reporting. This metric reports the average number of parameters per method, but does not include constructors.

NetBeans Java Code Metrics Hints

I've already mentioned NetBeans plug-ins for Checkstyle and PMD, but one of my favorite features in NetBeans is the numerous and highly customizable built-in NetBeans hints and inspections. NetBeans 7.4 introduces a whole new category of hints called "Java Code Metrics" and one of these new hints is the "Constructor declares too many parameters" hint. This hint is described as, "Reports constructor that take too many parameters. Constructors typically take more parameters than a regular method, especially when initializing a large object. Large number of parameters indicate a bad design. It's likely that yet more parameters will be added in the future, so creational patterns like Builder should be considered." I covered the application of the builder pattern and even discussed using NetBeans to refactor a builder in a previous post in this series.

Another newly added hint, "Method declares too many parameters," is described as, "Reports method that take too many parameters. Methods with large number of parameters indicate a bad design. It's likely that yet more parameters will be added in the future, so the parameters should be grouped into a Command Object, improving maintenance costs. Alternatively, the method could be refactored into several methods, each doing part of the task and requiring less parameters at input." This recommended approach is essentially the same as the parameters object approach I blogged about earlier in this series of posts.

All of the hints in the "Java Code Metrics" category of NetBeans 7.4 are disabled by default. In his blog post "Just How Messed Up Is My Code?," the "occasional" NetBeans blogger Geertjan Wielenga demonstrates how to configure the Java Code Metrics to be active.

The next screen snapshot demonstrates use of Java Code Metrics in NetBeans 7.4. This is configured by selecting "Source" followed by "Inspect..." (which will open the NetBeans 7.4 "Inspect" window)

When the drop-down next to the "Use" label and "Configuration" bullet is selected in the "Inspect" window, the choices indicated in the next screen snapshots are available.

For my demonstration purposes, I select "All Analyzes" and then click on the "Inspect" button. The next screen snapshot demonstrates the inspection/analysis in progress.

"Out of the box," the NetBeans Inspect mechanism finds a bunch of my code missing Javadoc statements, but does not flag the constructors and methods with too many parameters. To address this, I need to follow the steps in Geertjan's blog post. To do this, I can click on the Source | Inspect and select "Default" for "Configuration."

Selecting "Default" allows me to now click on the "Manage..." button and clicking on that button presents the "Configuration" window.

Clicking on the "Default" label leads to a drop-down from which "New..." can be selected.

I can name the new configuration "Java Code Metrics".

Clicking on the drop-down next to the "Analyzer" label allows me to select "NetBeans Java Hints" and selecting that option presents all of the NetBeans Java Hint by categories. The next screen snapshot shows that I can select the code metrics to be inspected.

The next screen snapshot indicates that I can select "Constructor declares too many parameters" as a checkbox and "Method declares too many parameters" as another checkbox.

With a new "Java Code Metrics" inspection, it is easy to now inspect for those particular concerns by clicking on the "Inspect" button.

Pressing "Inspect" to apply the newly created "Java Code Metrics" inspection, leads to results shown in the following screen snapshots. The first image shows the high-level results and following images show more specific details made available by clicking on the high-level results.

With all of the static analysis tools I've covered, one can adjust the number of parameters deemed "too many" for a constructor or method. This configuration is really easy with NetBeans's Java Code Metrics support. The next two screen snapshots demonstrate that these values are set for constructors and methods respectively in the same window where we checked the options we wanted inspected. The expanded window for each checked option includes definition of the inspection type and a field to select the applicable number of parameters.

It is nice to be able to easily change the number of parameters deemed unacceptable (or at least worth pointing out so that the "eye test" can be applied) because there is such widely differing opinions on what number is unacceptable.

As the last series of screen snapshots demonstrate, NetBeans 7.4 allows us to specifically inspect code for methods and constructors that have "too many parameters." As I have been writing this portion of this post, I'm reminded that NetBeans provides significant static code analysis support.

IntelliJ IDEA Inspections

IntelliJ IDEA provides inspections for ferreting out methods with too many parameters. The "Method with too many parameters" inspection is described as: "This inspection reports any instances of methods with too many parameters. Methods with too many parameters are a good sign that refactoring is necessary. Methods whose signatures are inherited from library classes are ignored by this inspection." This inspection allows the number of method parameters that is too many to be configured.

Other Static Analysis Tools

There are other tools besides the ones that I have already focused on that, through static analysis, identify and flag awhen a Java method or constructor accepts "too many parameters." These include Java Coding Standard Checker and Sonar. The existence of all these static analysis tools that identify "too many parameters" is evidence that having too many parameters can be a maintenance and readability problem.

Code Change Tools

The tools discussed so far in this post have been useful in analyzing code to find existing methods and constructors expecting too many parameters. Once identified, these constructors and methods can be manually changed/refactored to reduce the number of parameters with approaches such as the ones I've outlined in earlier posts in this series of too many parameters. Fortunately, there are some tools that can aid in these refactoring and new code generation efforts. Modern Java IDEs are particularly helpful in the refactoring and code generation efforts.

Refactoring

One of the my favorite approaches for dealing with too many parameters to a constructor is application of a builder. Fortunately, NetBeans provides the ability to automatically refactor code relying on numerous parameter constructor to use a builder implementation. I have blogged on this approach previously in posts Too Many Parameters in Java Methods, Part 3: Builder Pattern and NetBeans 7.2: Refactoring Parameterized Constructor As Builder. IntelliJ IDEA has a similar refactoring tool called Replace Constructor with Builder. The Builder Pattern Eclipse Plugin is available for Eclipse.

Code Generation

Some of my favorite approaches for dealing with too many parameters include writing new custom types and creating parameters objects. Modern Java IDEs are tremendous here, making generation of these classes and enums simple. It often takes only a few minutes to generate a complete class with appropriate toString(), hashCode(), and equals(Object) implementations. It's really difficult for one to argue that it's too "expensive" to write custom type classes and parameters object (command) classes given how easy they are to write with modern Java IDEs and their code generation capabilities.

Conclusion

The focus of this post has been on tools that are available to the Java developer for identifying places in Java code where methods and/or constructors expect too many parameters and on tools available for easily fixing these constructors and methods to accept a more reasonable number of parameters. There are several static analysis tools and IDEs that support rapid identification of constructors and methods that expect too many parameters and modern Java IDEs make refactoring and code generation quick and easy. The wide number of tools available for identifying the "too many parameters" issue is a reminder that this is in fact an issue worth fixing.